The Gas Content and Star Formation in Quasars

Kavli Institute for Astronomy and Astrophysics Peking University

Essential Ingredients, Challenges

Techniques to Measure ISM and Stellar Content

Stellar Mass, Distribution, Age

- *Kim, Ho et al.* (2008, 2017)
- Peng, Ho et al. (2002, 2010)
- Zhao, Ho et al. (2021); Zhuang & Ho (2022, 2023)

Techniques to Measure ISM and Stellar Content

Gas Properties

- H I (21 cm): currently limited to *z* < 0.1 *Ho, Darling & Greene* (2008); *Yu, Ho & Wang* (2022)
- CO: expensive, uncertain (CO–H₂ conversion) Shangguan, Ho et al. (2022a, 2022b)
- Dust emission: $M_{gas} = M_{HI} + M_{H_2} = R_{GD} M_{dust}$; $R_{GD} \propto Z \propto M_{stars}$ Shangguan, Ho et al. (2018, 2019)
- Dust absorption: Balmer decrement + metallicity correction Yesuf & Ho (2019, 2020)
- PAH emission: PDRs closely related to GMCs Zhang & Ho (2023a)

Techniques to Measure ISM and Stellar Content

LUIS C. HO¹, JEREMY DARLING², AND JENNY E. GREENE^{3,4}

The Astrophysical Journal Suppl. Ser., 177:103, 2008

A NEW H I SURVEY OF ACTIVE GALAXIES

The Astrophysical Journal, 681:128, 2008

PROPERTIES OF ACTIVE GALAXIES DEDUCED FROM HIOBSERVATIONS

Number Normalized LUIS C. HO¹, JEREMY DARLING², AND JENNY E. GREENE^{3,4}

• Specific H I gas mass similar to that of normal galaxies of the same Hubble type

- H I line widths obey the **Tully-Fisher relation of** normal galaxies
- Implies regular spatial distribution and kinematics

THE ASTROPHYSICAL JOURNAL, 854:158 (37pp), 2018 February 20 **On the Gas Content and Efficiency of AGN Feedback in Low-redshift Quasars**

Jinyi Shangguan^{1,2}, Luis C. Ho^{1,2}, and Yanxia Xie¹

Testing the Evolutionary Link between Type 1 and Type 2 Quasars with Measurements of the Interstellar Medium

Jinyi Shangguan^{1,2} and Luis C. Ho^{1,2}

THE ASTROPHYSICAL JOURNAL, 873:90 (21pp), 2019 March 1

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 247:15 (13pp), 2020 March An ALMA CO(2–1) Survey of Nearby Palomar–Green Quasars

Jinyi Shangguan^{1,2}, Luis C. Ho^{2,3}, Franz E. Bauer^{4,5,6}, Ran Wang^{2,3}, and Ezequiel Treister⁴

THE ASTROPHYSICAL JOURNAL, 899:112 (17pp), 2020 August 20

AGN Feedback and Star Formation of Quasar Host Galaxies: Insights from the **Molecular Gas**

Jinyi Shangguan^{1,2}, Luis C. Ho^{2,3}, Franz E. Bauer^{4,5,6}, Ran Wang^{2,3}, and Ezequiel Treister⁴

The Interplay between Star Formation and Black Hole Accretion in Nearby Active Galaxies

THE ASTROPHYSICAL JOURNAL, 896:108 (13pp), 2020 June 20

Compact Molecular Gas Distribution in Quasar Host Galaxies

Juan Molina¹^(b), Ran Wang^{1,2}^(b), Jinyi Shangguan³^(b), Luis C. Ho^{1,2}^(b), Franz E. Bauer^{4,5,6}^(b), Ezequiel Treister⁴^(b), and Yali Shao⁷ 💿

THE ASTROPHYSICAL JOURNAL, 908:231 (17pp), 2021 February 20

THE ASTROPHYSICAL JOURNAL, 908:231 (17pp), 2021 February 20

Compact Molecular Gas Distribution in Quasar Host Galaxies

Juan Molina¹^(b), Ran Wang^{1,2}^(b), Jinyi Shangguan³^(b), Luis C. Ho^{1,2}^(b), Franz E. Bauer^{4,5,6}^(b), Ezequiel Treister⁴^(b), and Yali Shao⁷^(b)

THE ASTROPHYSICAL JOURNAL, 908:231 (17pp), 2021 February 20

Compact Molecular Gas Distribution in Quasar Host Galaxies

- Evidence for kinematic twisting in the centralmost regions

Juan Molina¹^(b), Ran Wang^{1,2}^(b), Jinyi Shangguan³^(b), Luis C. Ho^{1,2}^(b), Franz E. Bauer^{4,5,6}^(b), Ezequiel Treister⁴^(b), and Yali Shao⁷

- Normal cold gas content
- Normal cold gas kinematics
- Outflows are rare
- Gas more centrally concentrated?
- Challenge to models of AGN feedback

Summary I: Gas Properties

The Infrared Emission and Vigorous Star Formation of Low-redshift Quasars

Yanxia Xie¹⁽¹⁾, Luis C. Ho^{1,2}⁽⁰⁾, Ming-Yang Zhuang^{1,2}⁽⁰⁾, and Jinyi Shangguan³⁽⁰⁾

THE ASTROPHYSICAL JOURNAL, 910:124 (11pp), 2021 April 1

- SFRs based on FIR emission, verified with SFRs derived from [Ne II]+[Ne III] MIR lines (Ho & Keto 2007; Zhuang & Ho 2019)
- Stellar masses from HST images, gas masses from dust masses
- Most quasars lie on or above the star-forming main sequence

The Infrared Emission and Vigorous Star Formation of Low-redshift Quasars

THE ASTROPHYSICAL JOURNAL, 910:124 (11pp), 2021 April 1

Yanxia Xie¹⁽¹⁾, Luis C. Ho^{1,2}⁽⁰⁾, Ming-Yang Zhuang^{1,2}⁽⁰⁾, and Jinyi Shangguan³⁽⁰⁾

- SFRs based on FIR emission, verified with SFRs derived from [Ne II]+[Ne III] MIR lines (Ho & Keto 2007; Zhuang & Ho 2019)
- Stellar masses from HST images, gas masses from dust masses
- Most quasars lie on or above the star-forming main sequence
- Significant fraction of starbursts (high sSFRs and high SFEs)

The Infrared Emission and Vigorous Star Formation of Low-redshift Quasars

THE ASTROPHYSICAL JOURNAL, 910:124 (11pp), 2021 April 1

Yanxia Xie¹⁽¹⁾, Luis C. Ho^{1,2}⁽⁰⁾, Ming-Yang Zhuang^{1,2}⁽⁰⁾, and Jinyi Shangguan³⁽⁰⁾

- SFRs based on FIR emission, verified with SFRs derived from [Ne II]+[Ne III] MIR lines (Ho & Keto 2007; Zhuang & Ho 2019)
- Stellar masses from HST images, gas masses from dust masses
- Most quasars lie on or above the star-forming main sequence
- Significant fraction of starbursts (high sSFRs and high SFEs)

• But many are not recent mergers

The Star-forming Main Sequence of the Host Galaxies of Low-redshift Quasars

- SFRs from [O II] method of Zhuang & Ho (2019)
- Stellar masses from grizy PanSTARRS images
- GALFITM simultaneous multiband decomposition

THE ASTROPHYSICAL JOURNAL, 934:130 (23pp), 2022 August 1

Ming-Yang Zhuang (庄明阳)^{1,2}¹⁰ and Luis C. Ho^{1,2}¹⁰

- Most quasars lie on or above the star-forming main sequence
- Specific SFR increases with AGN accretion rate
- Possible evidence of positive AGN feedback?

Black Hole Accretion Correlates with Star Formation Rate and Star Formation Efficiency in Nearby Luminous Type 1 Active Galaxies

Ming-Yang Zhuang^{1,2}^(D), Luis C. Ho^{1,2}^(D), and Jinyi Shangguan³^(D)

- SFR correlates with BH accretion rate, after accounting for mutual dependence on molecular gas mass
- Gas mass from dust absorption method of Yesuf & Ho (2019)
- SFRs from [O II] method of Zhuang & Ho (2019)

THE ASTROPHYSICAL JOURNAL, 906:38 (8pp), 2021 January 1

Black Hole Accretion Correlates with Star Formation Rate and Star Formation Efficiency in Nearby Luminous Type 1 Active Galaxies

- SFR correlates with BH accretion rate, after accounting for mutual dependence on molecular gas mass
- Gas mass from dust absorption method of Yesuf & Ho (2019)
- SFRs from [O II] method of Zhuang & Ho (2019)

THE ASTROPHYSICAL JOURNAL, 906:38 (8pp), 2021 January 1

- SFE much higher than normal star-forming galaxies, consistent with starburst systems
- SFE correlates with BH accretion rate
- Possible evidence of positive AGN feedback?

Enhanced Star Formation Efficiency in the Central Regions of Nearby Quasar Hosts

THE ASTROPHYSICAL JOURNAL, 944:30 (21pp), 2023 February 10

Juan Molina¹^(b), Luis C. Ho^{1,2}^(b), Ran Wang^{1,2}^(c), Jinyi Shangguan³^(c), Franz E. Bauer^{4,5,6}^(c), and Ezequiel Treister⁴^(c)

Enhanced Star Formation Efficiency in the Central Regions of Nearby Quasar Hosts

• Use mixing-sequence method to estimate distribution of spatially resolved SFRs

THE ASTROPHYSICAL JOURNAL, 944:30 (21pp), 2023 February 10

Juan Molina¹^(b), Luis C. Ho^{1,2}^(b), Ran Wang^{1,2}^(b), Jinyi Shangguan³^(b), Franz E. Bauer^{4,5,6}^(b), and Ezequiel Treister⁴^(b)

Enhanced Star Formation Efficiency in the Central Regions of Nearby Quasar Hosts

- Centrally peaked SFR and molecular gas distributions
- SFE enhanced in the *central* regions of the host galaxies

THE ASTROPHYSICAL JOURNAL, 944:30 (21pp), 2023 February 10

Juan Molina¹^(b), Luis C. Ho^{1,2}^(b), Ran Wang^{1,2}^(c), Jinyi Shangguan³^(c), Franz E. Bauer^{4,5,6}^(c), and Ezequiel Treister⁴^(c)

Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei*

Minjin Kim^{1,2}, Luis C. Ho^{3,4}, Chien Y. Peng⁵, Aaron J. Barth⁶, and Myungshin Im⁷

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 232:21 (30pp), 2017 October

- Host galaxy structure can be decomposed from AGN with detailed 2D image analysis
- Accurate bulge properties possible, but challenging
- Requires high-resolution images from HST and JWST
- Need careful treatment of PSF

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 232:21 (30pp), 2017 October

Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei*

Minjin Kim^{1,2}, Luis C. Ho^{3,4}, Chien Y. Peng⁵, Aaron J. Barth⁶, and Myungshin Im⁷

- Host galaxy structure can be decomposed from AGN with detailed 2D image analysis
- Accurate bulge properties possible, but challenging
- Requires high-resolution images from HST and JWST
- Need careful treatment of PSF

THE ASTROPHYSICAL JOURNAL, 876:35 (9pp), 2019 May 1

Evidence for a Young Stellar Population in Nearby Type 1 Active Galaxies

Minjin Kim^{1,2} and Luis C. Ho^{3,4}

• Bulges of AGNs overluminous cf. inactive galaxies • Luminosity excess larger for higher Eddington ratio

THE ASTROPHYSICAL JOURNAL, 876:35 (9pp), 2019 May 1

The Diverse Morphology, Stellar Population, and Black Hole Scaling Relations of the **Evidence for a Young Stellar Population in Nearby Type 1 Active Galaxies** Host Galaxies of Nearby Quasars

Minjin Kim^{1,2} and Luis C. Ho^{3,4}

• Bulges of AGNs overluminous cf. inactive galaxies • Luminosity excess larger for higher Eddington ratio Yulin Zhao^{1,2}, Luis C. Ho^{1,2}, Jinyi Shangguan^{1,3}, Minjin Kim^{4,5}, Dongyao Zhao^{1,6}, and Hua Gao^{1,2,7}

• Luminosity excess concentrated in inner region of bulge

• Consistent with younger central stellar population

Evolutionary Paths of Active Galactic Nuclei and Their Host Galaxies

- Stellar masses from *grizy* PanSTARRS images; ~12,000 AGNs z < 0.35
- GALFITM simultaneous multiband decomposition

NATURE ASTRONOMY 2023, in press

MING-YANG ZHUANG (庄明阳) ^{[D1,2} AND LUIS C. HO ^[D1,2]

• Star formation history of host systematically correlated with position on BH-galaxy scaling relations

- Normal or enhanced SFR
- Large fraction of starbursts (high SFE)
- Star formation more centrally concentrated
- • • Possibly triggered internally
- SFR $\propto \dot{M}_{\rm BH}$; SFE $\propto \dot{M}_{\rm BH}$

Summary II: Star Formation Properties

Some Food for Thought

- Models of AGN feedback should be reevaluated
- Role of SN feedback likely under-appreciated
- Nuclear transients, circumnuclear SNe
- Evolution of stellar remnants in central regions of galaxies

