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Techniques to Measure ISM and Stellar Content

Stellar Mass, Distribution, Age


•High-resolution images with stable PSF (HST, JWST)

Kim, Ho et al. (2008, 2017)


•2D decomposition (e.g., GALFIT)

Peng, Ho et al. (2002, 2010)


•Multiple bands to get colors, SEDs

Zhao, Ho et al. (2021); Zhuang & Ho (2022, 2023)
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Techniques to Measure ISM and Stellar Content

Gas Properties


•H I (21 cm): currently limited to z < 0.1

Ho, Darling & Greene (2008); Yu, Ho & Wang (2022)


•CO: expensive, uncertain (CO−H2 conversion)

Shangguan, Ho et al. (2022a, 2022b)


•Dust emission: Mgas = MH I + MH2 =  RGD Mdust ; RGD  ∝  Z  ∝  Mstars  
Shangguan, Ho et al. (2018, 2019)


•Dust absorption: Balmer decrement + metallicity correction

Yesuf & Ho (2019, 2020)


•PAH emission: PDRs closely related to GMCs

Zhang & Ho (2023a)
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Star Formation Rate, Star Formation Efficiency


•All traditional SFR estimators are suspect, AGN contamination


•New methods, new calibrations

✦ [O II] λ3737 (Ho 2005; Zhuang & Ho 2019)

✦ [Ne II] 12.8 μm + [Ne III] 15.6 μm (Ho & Keto 2007; Zhuang, Ho et al. 2019)

✦PAH emission (Xie & Ho 2019; Zhang Ho 2021, 2023)

✦FIR continuum (Xie, Ho et al. 2021)

✦Full SED fitting (Zhuang & Ho 2022, Li, Ho et al. 2023)

Techniques to Measure ISM and Stellar Content

A simple model to interpret galaxy spectra 1605

Figure 5. Examples of spectral energy distributions obtained by combining the infrared models of Table 1 with attenuated stellar population spectra
corresponding to the same contributions by dust in stellar birth clouds (1 − f µ) and in the ambient ISM (f µ) to the total energy L tot

d absorbed and reradiated by
dust (Section 2.3). (a) Quiescent star-forming galaxy spectrum combined with the ‘cold’ infrared model of Table 1; (b) normal star-forming galaxy spectrum
combined with the ‘standard’ infrared model of Table 1; (c) starburst galaxy spectrum combined with the ‘hot’ infrared model of Table 1 (see text for details
about the parameters of the stellar population models). Each panel shows the unattenuated stellar spectrum (blue line), the emission by dust in stellar birth
clouds (green line), the emission by dust in the ambient ISM (red line) and the total emission from the galaxy, corresponding to the sum of the attenuated stellar
spectrum and the total infrared emission (black line).

characterized by an age tg and a star formation time-scale parameter
γ (equation 31), and random bursts superimposed on this continu-
ous model. We take tg to be uniformly distributed over the interval
from 0.1 to 13.5 Gyr. To avoid oversampling galaxies with negli-
gible current star formation, we distribute γ using the probability
density function p(γ ) = 1 − tanh (8 γ − 6), which is approximately
uniform over the interval from 0 to 0.6 Gyr−1 and drops expo-
nentially to zero around γ = 1 Gyr−1. Random bursts occur with
equal probability at all times until tg. We set the probability so that
50 per cent of the galaxies in the library have experienced a burst
in the past 2 Gyr. We parametrize the amplitude of each burst as
A = Mburst/Mcont, where Mburst is the mass of stars formed in the
burst and Mcont is the total mass of stars formed by the continuous
model over the time tg. This ratio is distributed logarithmically be-
tween 0.03 and 4.0. During a burst, stars form at a constant rate
over the time tburst, which we distribute uniformly between 3 × 107

and 3 × 108 yr. We distribute the models uniformly in metallicity
between 0.02 and 2 times solar.

We sample attenuation by dust in the library by randomly drawing
the total effective V-band absorption optical depth, τ̂V , and the
fraction of this contributed by dust in the ambient ISM, µ (equations
3 and 4). We distribute τ̂V according to the probability density
function p(τ̂V ) = 1 − tanh(1.5 τ̂V − 6.7), which is approximately
uniform over the interval from 0 to 4 and drops exponentially to
zero around τ̂V = 6. For µ, we adopt the same probability density
function as for γ above, i.e. p(µ) = 1 − tanh (8 µ − 6). We note that

these priors for attenuation encompass the dust properties of SDSS
galaxies, for which τ̂V and µ peak around 1.0 and 0.3, respectively,
with broad scatter (Brinchmann et al. 2004; Kong et al. 2004). Our
final stellar population library consists of 50 000 different models.

In parallel, we generate a random library of infrared spectra as
follows. We take the fraction f µ of the total infrared luminosity
contributed by dust in the ambient ISM to be uniformly distributed
over the interval from 0 to 1. We adopt a similar distribution for
the fractional contribution by warm dust in thermal equilibrium
to the infrared luminosity of stellar birth clouds, ξ BC

W . For each
random drawing of ξ BC

W , we successively draw the contributions by
the other dust components to the infrared luminosity of stellar birth
clouds (i.e. hot mid-infrared continuum and PAHs) to satisfy the
condition in equation (14): we draw ξ BC

MIR from a uniform distribution
between 0 and 1 − ξ BC

W , and we set ξ BC
PAH = 1 − ξ BC

W − ξ BC
MIR. While

this procedure does not exclude values of ξ BC
MIR and ξ BC

PAH close to
unity, it does favour small values of these parameters, and hence,
it avoids oversampling physically implausible models. We take the
equilibrium temperature T BC

W of warm dust in the stellar birth clouds
to be uniformly distributed between 30 and 60 K, and that T ISM

C of
cold dust in the ambient ISM to be uniformly distributed between 15
and 25 K. We draw the fractional contribution ξ ISM

C by cold dust in
thermal equilibrium to the infrared luminosity of the ambient ISM
from a uniform distribution between 0.5 and 1 (this also defines the
contributions ξ ISM

PAH, ξ ISM
MIR and ξ ISM

W by PAHs, the hot mid-infrared
continuum and warm dust to the infrared luminosity of the ambient
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clouds (green line), the emission by dust in the ambient ISM (red line) and the total emission from the galaxy, corresponding to the sum of the attenuated stellar
spectrum and the total infrared emission (black line).

characterized by an age tg and a star formation time-scale parameter
γ (equation 31), and random bursts superimposed on this continu-
ous model. We take tg to be uniformly distributed over the interval
from 0.1 to 13.5 Gyr. To avoid oversampling galaxies with negli-
gible current star formation, we distribute γ using the probability
density function p(γ ) = 1 − tanh (8 γ − 6), which is approximately
uniform over the interval from 0 to 0.6 Gyr−1 and drops expo-
nentially to zero around γ = 1 Gyr−1. Random bursts occur with
equal probability at all times until tg. We set the probability so that
50 per cent of the galaxies in the library have experienced a burst
in the past 2 Gyr. We parametrize the amplitude of each burst as
A = Mburst/Mcont, where Mburst is the mass of stars formed in the
burst and Mcont is the total mass of stars formed by the continuous
model over the time tg. This ratio is distributed logarithmically be-
tween 0.03 and 4.0. During a burst, stars form at a constant rate
over the time tburst, which we distribute uniformly between 3 × 107

and 3 × 108 yr. We distribute the models uniformly in metallicity
between 0.02 and 2 times solar.

We sample attenuation by dust in the library by randomly drawing
the total effective V-band absorption optical depth, τ̂V , and the
fraction of this contributed by dust in the ambient ISM, µ (equations
3 and 4). We distribute τ̂V according to the probability density
function p(τ̂V ) = 1 − tanh(1.5 τ̂V − 6.7), which is approximately
uniform over the interval from 0 to 4 and drops exponentially to
zero around τ̂V = 6. For µ, we adopt the same probability density
function as for γ above, i.e. p(µ) = 1 − tanh (8 µ − 6). We note that

these priors for attenuation encompass the dust properties of SDSS
galaxies, for which τ̂V and µ peak around 1.0 and 0.3, respectively,
with broad scatter (Brinchmann et al. 2004; Kong et al. 2004). Our
final stellar population library consists of 50 000 different models.

In parallel, we generate a random library of infrared spectra as
follows. We take the fraction f µ of the total infrared luminosity
contributed by dust in the ambient ISM to be uniformly distributed
over the interval from 0 to 1. We adopt a similar distribution for
the fractional contribution by warm dust in thermal equilibrium
to the infrared luminosity of stellar birth clouds, ξ BC

W . For each
random drawing of ξ BC

W , we successively draw the contributions by
the other dust components to the infrared luminosity of stellar birth
clouds (i.e. hot mid-infrared continuum and PAHs) to satisfy the
condition in equation (14): we draw ξ BC

MIR from a uniform distribution
between 0 and 1 − ξ BC

W , and we set ξ BC
PAH = 1 − ξ BC

W − ξ BC
MIR. While

this procedure does not exclude values of ξ BC
MIR and ξ BC

PAH close to
unity, it does favour small values of these parameters, and hence,
it avoids oversampling physically implausible models. We take the
equilibrium temperature T BC

W of warm dust in the stellar birth clouds
to be uniformly distributed between 30 and 60 K, and that T ISM
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cold dust in the ambient ISM to be uniformly distributed between 15
and 25 K. We draw the fractional contribution ξ ISM

C by cold dust in
thermal equilibrium to the infrared luminosity of the ambient ISM
from a uniform distribution between 0.5 and 1 (this also defines the
contributions ξ ISM

PAH, ξ ISM
MIR and ξ ISM

W by PAHs, the hot mid-infrared
continuum and warm dust to the infrared luminosity of the ambient
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Figure 5. Examples of spectral energy distributions obtained by combining the infrared models of Table 1 with attenuated stellar population spectra
corresponding to the same contributions by dust in stellar birth clouds (1 − f µ) and in the ambient ISM (f µ) to the total energy L tot

d absorbed and reradiated by
dust (Section 2.3). (a) Quiescent star-forming galaxy spectrum combined with the ‘cold’ infrared model of Table 1; (b) normal star-forming galaxy spectrum
combined with the ‘standard’ infrared model of Table 1; (c) starburst galaxy spectrum combined with the ‘hot’ infrared model of Table 1 (see text for details
about the parameters of the stellar population models). Each panel shows the unattenuated stellar spectrum (blue line), the emission by dust in stellar birth
clouds (green line), the emission by dust in the ambient ISM (red line) and the total emission from the galaxy, corresponding to the sum of the attenuated stellar
spectrum and the total infrared emission (black line).
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The Astrophysical Journal Suppl. Ser., 177:103, 2008

154  z < 0.1 


• H I gas is common in nearby AGNs 

• Arecibo survey: detection rate 75%

• Typical MH I ≈ 1010 M⦿

9



The Astrophysical Journal, 681:128, 2008

Tully-Fisher

Relation • Specifi


e


• H I line widths obey the 
Tully-Fisher relation of 
normal galaxies


• Implies regular spatial 
distribution and  kinematics

10



• Gas content based on the dust masses from dust emission, 1-500 μm IR SED 

• Type 1 quasars (z < 0.5)  have abundant cold gas, similar to inactive galaxies

• Gas fraction independent of AGN luminosity or Eddington ratio

• No evidence of instantaneous gas depletion by “quasar-mode” feedback
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• Gas content based on the dust masses from dust emission, 1-500 μm IR SED 

• Type 2 quasars (z < 0.5)  have abundant cold gas, similar to inactive galaxies

• Gas fraction independent of AGN luminosity or Eddington ratio

• Similar to matched sample of type 1 quasars

• No evidence of instantaneous gas depletion by “quasar-mode” feedback
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• Molecular gas content based on ALMA CO(2-1) observations

• Detection rate ~100%

• Confi
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CO

Tully-Fisher


Relation

• Type 1 quasars have MH2 content similar to inactive galaxies

• Line widths obey the CO Tully-Fisher relation of normal galaxies, 

implies regular spatial distribution and kinematics

• Gas fraction independent of AGN luminosity or Eddington ratio

• No evidence of molecular outfl

14



	MH2 ≈ 109 M⊙  

• Gas content based on the dust absorption method of Yesuf & Ho (2019)

• Both type 1 and type 2 AGNs (z < 0.2)  have abundant molecular gas 15

	13,000 AGNs



16



16



• Molecular gas is more compact (∼1−2 kpc) relative to normal, star-forming galaxies

• Evidence for kinematic twisting in the centralmost regions

16



•Normal cold gas content


•Normal cold gas kinematics 


•Outflows are rare


•Gas more centrally concentrated? 


•Challenge to models of AGN feedback

Summary I: Gas Properties

17



• SFRs based on FIR emission, 
verifi

)


• Stellar masses from HST images, 
gas masses from dust masses


• Most quasars lie on or above the 
star-forming main sequence
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verifi
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• Stellar masses from HST images, 
gas masses from dust masses


• Most quasars lie on or above the 
star-forming main sequence
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starbursts!

starbursts!

• Signifi
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• Stellar masses from HST images, 
gas masses from dust masses


• Most quasars lie on or above the 
star-forming main sequence
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starbursts!

starbursts!

• Signifi
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• But many are not recent mergers



• SFRs from [O II] method of Zhuang & Ho (2019)

• Stellar masses from grizy PanSTARRS images

• GALFITM simultaneous multiband decomposition

• Most quasars lie on or above the star-forming main sequence

• Specifie

• Possible evidence of positive AGN feedback?

19



• SFR correlates with BH accretion rate, after accounting for 
mutual dependence on molecular gas mass


• Gas mass from dust absorption method of Yesuf & Ho (2019)

• SFRs from [O II] method of Zhuang & Ho (2019) 20



• SFR correlates with BH accretion rate, after accounting for 
mutual dependence on molecular gas mass


• Gas mass from dust absorption method of Yesuf & Ho (2019)

• SFRs from [O II] method of Zhuang & Ho (2019)

Star-forming main 

z ≈ 0.3 

Type 1 AGNs

Star-forming main sequence

• SFE much higher than normal star-forming galaxies, 
consistent with starburst systems


• SFE correlates with BH accretion rate

• Possible evidence of positive AGN feedback? 20
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• Use mixing-sequence method to estimate distribution of spatially resolved SFRs

21



• Use mixing-sequence method to estimate distribution of spatially resolved SFRs

• Centrally peaked SFR and molecular gas distributions

• SFE enhanced in the central regions of the host galaxies 21



• Host galaxy structure can be 
decomposed from AGN with 
detailed 2D image analysis

• Accurate bulge properties 
possible, but challenging


• Requires high-resolution 
images from HST and JWST


• Need careful treatment of PSF

22
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detailed 2D image analysis

• Accurate bulge properties 
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• Bulges of AGNs overluminous cf. inactive galaxies 

• Luminosity excess larger for higher Eddington ratio

23



• Bulges of AGNs overluminous cf. inactive galaxies 

• Luminosity excess larger for higher Eddington ratio

23

• Luminosity excess concentrated in inner region of bulge

• Consistent with younger central stellar population 



NATURE ASTRONOMY 2023, in press

• Stellar masses from grizy PanSTARRS images; ~12,000 AGNs z < 0.35

• GALFITM simultaneous multiband decomposition

• Star formation history of host systematically correlated with position on BH-galaxy scaling relations 24



Summary II: Star Formation Properties

•Normal or enhanced SFR


• Large fraction of starbursts (high SFE)


• Star formation more centrally concentrated


• Possibly triggered internally


• SFR ∝ MBH ;    SFE ∝ MBH 

• •

• •
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Some Food for Thought

•Models of AGN feedback should be reevaluated


•Role of SN feedback likely under-appreciated


•Nuclear transients, circumnuclear SNe


• Evolution of stellar remnants in central regions of galaxies

• •
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