3213 5)5953'(%/?

- : i)
: 4 ,
ﬁ/ PEKING UNIVERSITY \,&oﬂ/ Department of Astronomy. School of Phys

Susceptible gravitational wave sources
INn the active galactic nucleus

Peng Peng (& BB)
Advisor: Xian Chen (FR5%)



Massive LIGO sources indicates that the Astrophysical Environment
of the GW source formation is not ‘clean’

Masses In the Stellar Graveyard
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GW source in the active galactic nucleil can suffer from many kinds of
environmental effect, which will bias the parameter estimation

GW sources in the AGN disk:

BBH embedded in AGN disk; Wet EMRI--
(e.g. Tagawa+2019, Pan&Yang 2021)

Binary-single
interaction

Binary disruption (Tagawa et al. 2019)
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GW source in the active galactic nucleil can suffer from many kinds of
environmental effect, which will bias the parameter estimation

GW sources in the AGN disk: The waveform of these GW sources in the AGN disk can
BBH embedded in AGN disk: Wet EMR)- be affected by many kinds of environmental effect:
(e.g. Tagawa+2019, Pan&Yang 2021) Gas Iriction, Perturbation by stars in the cluster, SMBH
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GW source in the active galactic nucleil can suffer from many kinds of
environmental effect, which will bias the parameter estimation

GW sources in the AGN disk:

BBH embedded in AGN disk; Wet EMRI---

(e.g. Tagawa+2019, Pan&Yang 2021)
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The wavetorm of these GW sources In the AGN disk can
be affected by many kinds of environmental effect:

Gas Triction, Perturbation by stars in the cluster, SMBH
gravity - (e.g. Amaro-Seoane+2012, Derdzinski+2021)
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The environmental effect on the GW sources is
Important for our understanding about how the
Astrophysical BHs form and evolve



Migration of the small BHs in the disk is important for analyzing the astrophysical
environmental effect of the GW sources
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Migration of the small BHs in the disk is important for analyzing the astrophysical
environmental effect of the GW sources
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Type-I migration torque: Type-I migration trap
Energy and Angular-momentum (~100 — 10000R;)

transported by the density wave

(Goldreich & Tremaine 1979, Artymowicz 1993;

Ward 1997)

The Type-1I migration torque can drive the stellar-mass BHs to
migrate to the inner region of the disk (r ~ 100 — 10000 Ry), these

BHs will form binaries and merge around these radil. (e.g. Bellovary 2016)
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Type-I migration torgue: Type-| migration trap 147z =2~3

Energy and Angular-momentum (~100 — 10000Ry)

transported by e density el Can migration help to produce stellar-
(Goldreich & Tremaine 1979, Artymowicz 1993; 9 P P

Ward 1997) mass BH binary with r < 10 R ?

The Type-I migration torque can drive the stellar-mass BHs to
migrate to the inner region of the disk (r ~ 100 — 10000 Ry), these
BHs will form binaries and merge around these radii. (e.g. Bellovary 2016)



Result (Peng&Chen 2021)
Gaseous torque caused by different orbital velocity of the Gas and the B
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Result (Peng&Chen 2021)

Gaseous torgue caused by different orbital velocity of the Gas and the B
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Result (Peng&Chen 2021)

Gaseous torgue caused by different orbital velocity of the Gas and the B
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Result (Peng&Chen 2021)

Existence of the
last migration trap’

Blue line:
Type-| migration torque

Green line:
Gravitational wave radiation

The wind dominates and
trap the small BH ~ 7 Ry
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Result (Peng&Chen 2021)

Parameter spaces where the last migration trap works

Estimated event rate
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2013, Orazio and Loeb 2020), Penrose process

16 (Gong et al. 2021), Shapiro delay (Sberna et al.
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* Multiband observation: constraint GW
dispersion (Han & Chen 2019), SMBH
resonates with the binary (Cardoso et al. 2021)



Again, the migration i1s important for the astrophysical environmental
effect of the GW sources in the AGN. But there are so many small BHs In
the disk, even the gap-opening intermediate-mass BHs:--
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Again, the migration i1s important for the astrophysical environmental
effect of the GW sources in the AGN. But there are so many small BHs In
the disk, even the gap-opening intermediate-mass BHs:--

Intermediate-mass BH can be common In

the AGN disk (Mckernan+2012) Gap-opening object: Type-Il migration Ty = 1
Mass increase: (Lin & Papaloizou 1986a,b) ah?();
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Will interaction between the stellar BH and the gap-opening IMBH affects GW of
the extreme-mass ratio inspirals and intermediate-mass ratio inspirals?
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Due to the large number of GW phase cycles (> 1000),
EMRI and IMRI can provide rich information on the
spacetime geometry near the SMBH



Will interaction between the stellar BH and the gap-opening IMBH affects GW of

the extreme-mass ratio inspirals and intermediate-mass ratio inspirals?
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Due to the large number of GW phase cycles (> 1000),
EMRI and IMRI can provide rich information on the
spacetime geometry near the SMBH
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Result (Peng&Chen 2023)

Ditferential migration of the stellar-mass BH and the IMBH
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Result

The stellar-mass B
the hydrodynamica

(Peng&Chen 2023)

near the gap tends to

6.0 -
5.0 |

~

S 5.8

@)

+ 57

O 56 -

AN

S 5.5 -

T 54-

¥

---= surface density before gap-opening
surface density after gap-opening

. .
——
- A
—— -

-Qs/-QI=

21 3:2 43 3:42:3 12

ag
— = —4sgn(Qs — Qp) |fale ﬂs % sin(e)
ag MIMBH

Vertical dashed line: locations
of mean-motion resonances

4.0 -
= 3.5
-

=230 -

Q

5 2.5

n

v 2.0-
o15{

0]
0.5
0.0 -

log(Torqu

/YFad/FO =

0e
and gravitational torque

‘pushed away” Dby

R ——

negative gaseous torque
—— positive gaseous torque

-
—_—
—
- -
‘\
~
-~
—— =
- N

3.2

33 3% 35 36 3.7
log(r/Rs)

—085 —a — 178 + 7.9¢/~.




Result (Peng&Chen 2023)

Formation and early evolution of stellar-mass BH
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IMBH  ‘pushes’ the stellar BH
to migrate inward with the same
migration timescale.

The pair will migrate to ~10 Rg
almost the same time



Result (Peng&Chen 2023)

Later evolution in the GW regime: EMRI-IMRI pair

* |f ignored in the waveform model, it may induce
non-negligible biases Iin the estimated parameters
(e.g. Gupta 2022)

* |f properly accounted for, the perturbed signal may
reveal the mass and orbital parameters of the
perturber. The EMRI signals could reveal the outer
IMBHSs even before the IMRIs enter the LISA band.
(e.g. Speri&Gair 2021, Gupta 2022)

 Rich information about the formation and evolution
of sBHs and IMBHs in AGNs.
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The EMRI and IMRI can be detected simultaneously



summary

* The stellar-mass BHs migrate inwards and get trapped to r < 10R,, driven by the

gas In high accretion rate AGN disks or a gap-opening compact object. 1% the
LIGO/Virgo sources can possibly merge in the last migration trap.

* A gap-opening IMBH can trap the stellar BHs inside its orbit, push it to migrate
inward and form a stellar BH-IMBH pair. The subsequent migration of the two BHSs
IS synchronized until they reach a distance of about ~ 10 R from the central
SMBH, form the EMRI-IMRI pair.

* The GW signals of the BBH forming in the last migration trap and the EMRI-IMRI
pair can be very different from the clean BBH and EMRIs, which can provide rich
iInformation about the formation and evolution of stellar-mass BHs and IMBHSs
IN AGNs.



