EXTREME PARTICLE ACCELERATION AT (AGN) JET TERMINATION SHOCKS

Gwenael Giacinti (贾鸿宇)¹ Benoît Cerutti²

¹ Tsung-Dao Lee Inst., Shanghai Jiao Tong U.
 ² IPAG, CNRS, Univ. Grenoble Alpes

ArXiv:2303.12636, Accepted by A&A

Ultra-High Energy Cosmic-Rays

Up to ~10²⁰ eV! Probably involve BHs: AGNs, GRBs

Ultra-High Energy Cosmic-Rays

Jet Termination Shock Region

Blandford et al. 2019, Hardcastle & Croston 2020, Gabuzda 2021,...

Magnetization: $\sigma \sim 0.01$ - 1.

In-situ part. acceleration: Cygnus A hotspots

THE ASTROPHYSICAL JOURNAL, 891:173 (10pp), 2020 March 10

Snios et al.

Particle acceleration - relativistic shocks

At relativistic perpendicular shocks...

And particle-In-Cell (PIC) simulations ?

10

→ <u>Unmagnetized case</u> (σ =0):

Spitkovsky (2008), Sironi + (2013), Plotnikov+ (2018), Lemoine+ (2019)

Good but slow accelerators.

Maximum energy grows as t^{1/2} (Reville & Kirk 2010, Plotnikov et al. 2013)

Weibel-dominated shock: Fermi-acceleration on small-scale plasma turbulence

And particle-In-Cell (PIC) simulations ?

→ <u>Magnetized case</u> (σ >10⁻³):

Even weak magnetization levels stop particle acceleration.

E_{max} quickly saturates.

Cannot accelerate CRs to UHE at jet TS !!

Our solution: Global B field geometry

This was for plane-parallel, homogeneous shocks...

GLOBAL GEOMETRY OF THE MAGNETIC FIELD CAN SOLVE THE PROBLEM!

See Giacinti & Kirk (2018) for Pulsar Wind Nebulae :

Our solution: Global B field geometry

This was for **plane-parallel**, **homogeneous** shocks...

GLOBAL GEOMETRY OF THE MAGNETIC FIELD CAN SOLVE THE PROBLEM!

See Giacinti & Kirk (2018) for Pulsar Wind Nebulae

Numerical simulation (GG & Kirk 2018)

Particle-In-Cell (PIC) setup

2D Cartesian box (xz-plane), 262,144×16,384 cells, or 6554x410 d_i (ion skin depth)

Results PIC Sim.: Density evolution

x/di

-3 -2 -1

Ion spectrum: Time Evolution & E

E_{max} ions & Cavity size: Time Evolution

Maximum particle energy grows as the width of the cavity. Cavity stops growing at ~ width jet => **Coincides w/ a naive Hillas criterion eval.**

Particle acceleration mechanism

 \rightarrow Not standard shock acceleration mechanism here...

 \rightarrow Shear-flow acceleration at the edges of the cavity instead

Ideal motion E field in the lab frame: $\mathbf{E} = -\frac{\mathbf{V} \times \mathbf{B}}{\mathbf{I}}$

Acceleration rate:

$$\dot{\gamma} = \frac{e}{m_i c} \mathbf{E} \cdot \boldsymbol{\beta} \approx 0.5 \omega_0$$

~ cst (indpt of ene.)

Particle acceleration mechanism

Particle acceleration mechanism

→ Though shock acceleration if CR pressure is not too large (i.e. in test-particle limit): Huang, Reville, Kirk, GG, MNRAS 522, 4955 (2023)

Key point: Particles (w/ correct sign of charge) remain around the null point

Mechanism for VHE particle escape

Effect of a poloidal B field component

If sub-dominant $(B_z < B_{\phi})$, particle acceleration remains efficient (as expected in the jet TS region)

Observational test / evidence ?

Cavity might appear as underluminous hole.

THE ASTROPHYSICAL JOURNAL, 891:173 (10pp), 2020 March 10

Snios et al.

Conclusions & Perspectives

- Global structure of the magnetic field key to accelerating particles,
- A CR cavity forms at the shock front around the B field 'null' point, => Look for cavities!
- Particles are accelerated at the shear flows around the cavity,
- Particles are accelerated to the Hillas Limit!
 This mechanism could accelerate hadrons to UHEs at AGN jet TSs!
 ... and to PeV in stellar-mass BH jets, e.g. in SS433,
- CRs escape in the downstream in von Kármán vortices.