Sera Markoff (U Amsterdam) + EHTC & EHT MWL WG + ngEHT + CTAC + several current/former members of the 'jetsetters' group @ U Amsterdam (K. Chatterjee, R. Connors, D. v. Eijnatten, C. Hesp, M. Liska, M. Lucchini, W. Mulaudzi, G. Musoke, R. Plotkin, L. Sosapanta Salas, D.-S. Yoon) + J. Davelaar, S. Phillipov, B. Ripperda, S. Tchekhovskoy, Z. Younsi

Image credits: M87 at 230GHz (EHTC) & 43 GHz (EAVN)

Sera Markoff (U Amsterdam) + EHTC & EHT MWL WG + ngEHT + CTAC + several current/former members of the 'jetsetters' group @ U Amsterdam (K. Chatterjee, R. Connors, D. v. Eijnatten, C. Hesp, M. Liska, M. Lucchini, W. Mulaudzi, G. Musoke, R. Plotkin, L. Sosapanta Salas, D.-S. Yoon) + J. Davelaar, S. Phillipov, B. Ripperda, S. Tchekhovskoy, Z. Younsi

Sera Markoff (U Amsterdam) + EHTC & EHT MWL WG + ngEHT + CTAC + several current/former members of the 'jetsetters' group @ U Amsterdam (K. Chatterjee, R. Connors, D. v. Eijnatten, C. Hesp, M. Liska, M. Lucchini, W. Mulaudzi, G. Musoke, R. Plotkin, L. Sosapanta Salas, D.-S. Yoon) + J. Davelaar, S. Phillipov, B. Ripperda, S. Tchekhovskoy, Z. Younsi

(Cygnus A galaxy, combined LOFAR radio (red/orange) + Chandra Observatory X-ray image (blue); Wise & McKean)

(Perseus Cluster; Fabian++ 2005)

Sera Markoff (U Amsterdam) + EHTC & EHT MWL WG + ngEHT + CTAC + several current/former members of the 'jetsetters' group @ U Amsterdam (K. Chatterjee, R. Connors, D. v. Eijnatten, C. Hesp, M. Liska, M. Lucchini, W. Mulaudzi, G. Musoke, R. Plotkin, L. Sosapanta Salas, D.-S. Yoon) + J. Davelaar, S. Phillipov, B. Ripperda, S. Tchekhovskoy, Z. Younsi

(Cygnus A galaxy, combined LOFAR radio (red/orange) + Chandra Observatory X-ray image (blue); Wise & McKean)

The EHT "horizon" sources embody two different BH/jet states

M87: Elliptical Galaxy, in a weakly active state M81 (as proxy for Milky Way): Spiral Galaxy, Sgr A* is (LLAGN; e.g. Ho 2008), launches a huge jet quiescent, has no (obvious) jet

Total power emitted ~ 10⁴² erg/s

Total power emitted ~ 10³⁶ erg/s

Images from the first EHT campaign in 2017

M87*: (4/2019)

Consistent with prediction of GR to within ~10-17%

$M \approx 6.5 \times 10^9 M_{\odot}$ $D \approx 17 Mpc$ $d \approx 42 \mu as$

EHTC M87* paper I (2019); Sgr A* paper I (2022)

Sgr A*: (5/2022)

 $M \approx 4.2 \times 10^{6} M_{\odot}$ $D \approx 8.2 \text{ kpc}$ $d \approx 52 \text{ µas}$

GRMHD simulations + GR ray-tracing **w** synthetic EHT images

(Liska, Hesp, Tchekhovskoy, Ingram, vd Klis, SM++ 2018; Chatterjee, Younsi, Liska, Tchekhovskoy, SM 2020, using H-AMR, Liska++22)

GRMHD simulation: disk (orange), jets (blue)

Single particle fluid **protons**

Visualisations by DooSoo Yoon w/H-AMR & GRRT/BHOSS (Younsi++2016; 2020) and see EHT Collaboration 2019 Papers I-VI

Assume 100% H ($n_e = n_p$), thermal distributions

Heat electrons, example: from EHT/ Moscibrodzka++2016 (motivated by Alfvénic turbulent heating, eg. Howes 2010; Kawazura++2018)

$$T_p / T_e = \frac{R_{\rm low} + R_{\rm high} \beta^2}{1 + \beta^2}$$

Where $\beta = P_{gas}/P_{mag}$

Visualisations by DooSoo Yoon w/H-AMR & GRRT/BHOSS (Younsi++2016; 2020) and see EHT Collaboration 2019 Papers I-VI

GRMHD :

Visualisations by DooSoo Yoon w/H-AMR & GRRT/BHOSS (Younsi++2016; 2020) and see EHT Collaboration 2019 Papers I-VI

Visualisations by DooSoo Yoon w/H-AMR & GRRT/BHOSS (Younsi++2016; 2020) and see EHT Collaboration 2019 Papers I-VI

O 0 6 \mathbf{O} \bigcirc \mathbf{O} 0 \bigcirc \bigcirc O $\langle \mathbf{O} \rangle$ $\langle \bigcirc \rangle$ \bigcirc \bigcirc 6 $\overline{
 }$ \bigcirc (Paper V; EHT Collaboration 2019. Slide credit: A. Broderick)

	EHT	's M	87*	Sim	U	(EHT	' Pa	per Table 2	V p 2. Rejec	ass ction Ta	s/fa able	il t	al
A	20	6	0		F	$flux^1$	$a_{*}{}^{2}$	$R_{\rm high}{}^3$	AIS^4	ϵ^5	$L_{\rm X}{}^6$	$P_{\rm jet}{}^7$	
P					C	SANE	-0.94	1	Fail	Pass	Pass	Pass	F
						SANE	-0.94	10	Pass	Pass	Pass	Pass	P
				(and		SANE	-0.94	20	Pass	Pass	Pass	Pass	P
()					ter ter	SANE	-0.94	40	Pass	Pass	Pass	Pass	P
1000			1º			SANE	-0.94	80	Pass	Pass	Pass	Pass	
						SANE	-0.94	160	Fail	Pass	Pass	Pass	F
~					T	SANE	-0.5	1	Pass	Pass	Fail	Fail	F
						SANE	-0.5	10	Pass	Pass	Fail	Fail	
		and a second		0		SANE	-0.5	20	Pass	Pass	Pass	Fail	F
						SANE	-0.5	40	Pass	Pass	Pass	Fail	F
	6			F	6	SANE	-0.5	80	Fail	Pass	Pass	Fail	
	Q					SANE	-0.5	160	Pass	Pass	Pass	Fail	F
(life						SANE	0	1	Pass	Pass	Pass	Fail	
						SANE	0	10	Pass	Pass	Pass	Fail	
0	6			6	6	SANE	0	20	Pass	Pass	Fail	Fail	
					6	SANE	0	40	Pass	Pass	Pass	Fail	
						SANE	0	80	Pass	Pass	Pass	Fail	
						SANE	0	160	Pass	Pass	Pass	Fail	
EV	$\left(\right)$		$' \bigcirc \iota$	C	C	SANE	+0.5	1	Pass	Pass	Pass	Fail	
	100 Mar	A.		P	1	SANE	+0.5	10	Pass	Pass	Pass	Fail	
						SANE	+0.5	20	Pass	Pass	Pass	Fail	
					12	SANE	+0.5	40	Pass	Pass	Pass	Fail	
					1	SANE	+0.5	80	Pass	Pass	Pass	Fail	
	R		16			SANE	+0.5	100	Pass	Pass	Pass	Fall	
						SANE	+0.94	1	Pass	Fail	Pass	Fail	
	2 mil	F	A		1	SANE	+0.94	20	Pass	ган	Pass	Fail	
			(O)			SANE	+0.94	20	Pass	Pass	Pass	Fail	
						SANE	+0.94	40 80	Pass	Pass	Pass	Ган	
						SANE	+0.94 ±0.94	80 160	Pass	Pass	Pass	Pass	
6	6		0	6	E	MAD	-0.94	100	Fail	Fail	Pass	Pass	
						MAD	-0.94	10	Fail	Pass	Pass	Pass	
						MAD	-0.94	20	Fail	Pass	Pass	Pass	
						MAD	-0.94	20 40	Fail	Pass	Pass	Pass	
	0		0	E	E	MAD	-0.94	40 80	Fail	Pass	Pass	Pass	
C.			Y			MAD	-0.94	160	Fail	Page	Page	Pass	
						MAD	-0.54	1	Pase	Fail	Pase	Fail	
					10-	MAD	-0.5	10	Pass	Pase	Pass	Fail	
					6	MAD	-0.5	20	Page	Page	Page	Pass	
PaperV; EFI Collaboration Z MAD -0.5 20 Pass Pass Pass Pass Pass Pass Pass Pas													

	Table 2 (continued)								
ibie)	flux ¹	$a_{*}{}^{2}$	$R_{ m high}{}^3$	AIS^4	ϵ^5	$L_{\rm X}^{6}$	${P_{\rm jet}}^7$		
	MAD	-0.5	40	Pass	Pass	Pass	Pass	Pass	
	MAD	-0.5	80	Pass	Pass	Pass	Pass	Pass	
	MAD	-0.5	160	Pass	Pass	Pass	Pass	Pass	
Fail	MAD	0	1	Pass	Fail	Pass	Fail	Fail	
Pass	MAD	0	10	Pass	Pass	Pass	Fail	Fail	
Pass	MAD	0	20	Pass	Pass	Pass	Fail	Fail	
Pass	MAD	0	40	Pass	Pass	Pass	Fail	Fail	
Pass	MAD	0	80	Pass	Pass	Pass	Fail	Fail	
Fail	MAD	0	160	Pass	Pass	Pass	Fail	Fail	
Fail	MAD	+0.5	1	Pass	Fail	Pass	Fail	Fail	
Fail	MAD	+0.5	10	Pass	Pass	Pass	Pass	Pass	
Fail	MAD	+0.5	20	Pass	Pass	Pass	Pass	Pass	
Fail	MAD	+0.5	40	Pass	Pass	Pass	Pass	Pass	
Fail	MAD	+0.5	80	Pass	Pass	Pass	Pass	Pass	
Fail	MAD	+0.5	160	Pass	Pass	Pass	Pass	Pass	
Fail	MAD	+0.94	1	Pass	Fail	Fail	Pass	Fail	
Fail	MAD	+0.94	10	Pass	Fail	Pass	Pass	Fail	
Fail	MAD	+0.94	20	Pass	Pass	Pass	Pass	Pass	
Fail	MAD	± 0.94	40	Page	Page	Page	Page	Doce	
Fail	MAD	+0.94	40	Pass	Page	Daga	Pass	Pass	
Fail	MAD	+0.94	00 160	Pass	Pass	Pass	Pass	Pass	
Fail	MAD	+0.94	100	Pass	Pass	Pass	Pass	Pass	

¹flux: net magnetic flux on the black hole (MAD, SANE).

 $^{2}a_{*}$: dimensionless black hole spin.

Fail

Fail

Fail

Fail

Fail

Pass

Pass

Fail

Fail

Fail

Fail

 ${}^{3}R_{\text{high}}$: electron temperature parameter, see equation (8).

⁴Average Image Scoring (THEMIS-AIS), models are rejected if $p \leq 0.01$, see Section 4 and Table 1.

Fail ⁵ ϵ : radiative efficiency, models are rejected if ϵ is larger than the corresponding thin disk efficiency, see Section 6.1. Fail

Fail ${}^{6}L_{\rm X}$: X-ray luminosity; models are rejected if $\langle L_{\rm X} \rangle 10^{-2\sigma}$ $> 4.4 \times 10^{40} \,\mathrm{erg \, sec^{-1}}$. See Section 6.2. Fail

> ⁷ P_{jet} : jet power, models are rejected if $P_{\text{jet}} \leq 10^{42} \, \text{erg sec}^{-1}$, see Section 6.3.

7. DISCUSSION

Fail We have interpreted the EHT2017 data using a lim-Fail ited library of models with attendant limitations. Many of the limitations stem from the GRMHD model, which Fail treats the plasma as an ideal fluid governed by equa-Fail tions that encode conservation laws for particle number, Pass momentum, and energy. The eDF, in particular, is de-

k snapshot images

- predictions of GR to ~17%
- fields is ideal for launching jets!
- regions/mechanisms

EHT's M87* Simulation Library: ~10x5 models, 23 TB, 60k snapshot images $\left(\right) \quad \left(\right) \quad \left$ 0 Size/shape of shadow is consistent with O Q Q Q Q QBrightness asymmetry due to Doppler 00000000000O O O O O O O OPolarisation (EHTC 2021) prefers "MAD": dynamically strong, ordered, poloidal B (0) (0) (0) (0) (0) (0)Cannot yet connect the EHT image of M87* 0 $\left(\begin{array}{c}
 \end{array} \right)$ to its jets, or constrain particle acceleration **Event Horizon Telescope** (Paper V; EHT Collaboration 2019. Slide credit: A. Broderick)

Sgr A*: more difficult to analyse but better priors

Sgr A* gives us a direct view of coronal-like activity

X-ray flare from NASA's Chandra X-ray Observatory, + NuSTAR & Swift (space)

Infrared flare from the Keck Observatory + VLT/GRAVITY (ground)

10:38:57.11 UT

T. Do, Keck/UCLA Galactic Center Group

Visualization credit: Ben Prather, University of Illinois at Urbana-Champaign. Image library credit: EHT Theory Working Group, CK Chan. EHTC Sgr A* Paper I, Paper V (2022)

Sgr A*: Over 200 models, 1.8 Million images, ~PByte of data! 11 Constraints of 3 types : EHT images + Multi-wavelength + Variability

Visualization credit: Ben Prather, University of Illinois at Urbana-Champaign. Image library credit: EHT Theory Working Group, CK Chan. EHTC Sgr A* Paper I, Paper V (2022)

Sqr A*: Over 200 models, 1.8 Million images, ~PByte of data!

- "Best bet models": favour prograde spin (a~0.5-9.4), lower inclination ($\leq 30^{\circ}$), weak coupling between electrons and ions, very strong magnetic fields ("MAD")
- M87* and Sgr A* seem remarkably (puzzlingly) similar why doesn't Sgr A* show similar jets??
- Key difference may be in the mechanism/location for particle acceleration that lights up jets
- Theoretical progress now hinges on figuring out: Does Sgr A* actually have a jet?? • Interpretation of Sgr A*'s and M87*'s spectrum* and variability[†] [*Wanga Mulaudzi's (NT particles/MWL) & [†]León S. Salas' (2T + cooling) talks]

Visualization credit: Ben Prather, University of Illinois at Urbana-Champaign. Image library credit: EHT Theory Working Group, CK Chan. EHTC Sgr A* Paper I, Paper V (2022)

11 Constraints of 3 types : EHT images + Multi-wavelength + Variability

Does Sgr A* have a jet? (if so, why don't we see one??)

Sgr A*'s flares may be the key to the differences with M87*

(SM++01,03,05; SM 05; Corbel++2008; Hynes++2009; Plotkin, SM++2012, Corbel++2013; Gallo++2014; Rana++2016; Plotkin++2016)

Variability encodes dynamics and particle acceleration properties

2017 campaign: mm-variability shows clear change after a X-ray flare (lucky!!):

EHTC + Multiwavelength Partners, Sgr A* Paper II 2022; Wielgus, EHT++2022

Sgr A* flares clearly associated with plasma dynamics Polarization

Infrared flares move around the BH (GRAVITY++2018)

Animation credit: I. Marti-Vidal (Univ. Valencia)

Sgr A* flares clearly associated with plasma dynamics Polarization

Infrared flares move around the BH (GRAVITY++2018)

dynamics + microphysics to explain images, spectra and variability??

Animation credit: I. Marti-Vidal (Univ. Valencia)

What lights up the jet core?

M87 (VLBA/VLBI): Kim++2018; Walker+ +2018; Hada++14,16,18

3C84 (VLBI+RadioAstron): Giovannini++2018, Nat.Astro

Cen A (EHT): Janssen++2021, Nat.Astro

(5400x2300x2300) with H-AMR (Liska++ 2019;2022) yields similar results as resistive 2D-GRMHD; Ripperda, Liska, Chatterjee, Musoke++2022

▶ Plasmoids only form with resolutions \geq (6000x2000x2000),

> Plasmoids merge hotspots with roughly the right size/ timescales (~100 r_g/c~hour every ~2000r_g/c~day)

- Need kinetic treatment to study more realistically the timescales (faster) and radiative properties
- Ripperda, Liska, Chatterjee, Musoke++2022

(5400x2300x2300) with H-AMR (Liska++ 2019;2022) yields similar results as resistive 2D-GRMHD;

Ripperda, Liska, Chatterjee, Musoke++2022

Ripperda, Liska, Chatterjee, Musoke++2022

Reconnection expels flux tubes with vertical field, consistent with IR/mm polarisation

Can drive turbulence/instabilities leading to particle acceleration # flares?

see e.g., Porth++2021; Ripperda++, in prep.

Is there any circumstantial evidence for Sgr A* having a jet??

Li++2013

Zhu++2019

Yusef-Zadeh++2023

Is there any circumstantial evidence for Sgr A* having a jet??

AMRVAC Simulations in progress led by UvA VIA PD Fellow G. Musoke

Evidence for an outflow from multi-wavelength variability

(Maitra, SM & Falcke 2009; Brinkerink++ 2015; Brinkerink++2021)

Time (hours UT)

Future expansions of EHT should help resolve this question

Chavez, Johnson, Issaoun, Fromm, Tiede++ in prep.

M87 dynamics, SED and VHE flares

Any model should fit both the image and the larger jet structure/dynamics

EAVN 43 GHz: EAVN collab.

HSA 15 GHz: Hada++17

(Acciari++10; Abramowski++12; Kim++2018; Walker++2007-2018; Hada++14,16,18; EHT Collaboration 2019a-f, 2021ab)

200 Rg

(2D 6000x800x1 resolution: Chatterjee, Liska, Tchekhovskoy & SM 2019 using H-AMR: Liska, Chatterjee, Tchekhovskoy++ 2019)

And...each model should also describe core shift and the broadband SED!

(EHT Multiwavelength Science WG, EHTC, Fermi-LAT, HESS, MAGIC, VERITAS, EAVN++ 2021, ApJL)

Knot A

And...each model should also describe core shift and the broadband SED!

(EHT Multiwavelength Science WG, EHTC, Fermi-LAT, HESS, MAGIC, VERITAS, EAVN++ 2021, ApJL)

The new horizon: combined image + SED modelling

The new horizon: combined image + SED modelling

Radio to optical SED fitting by Fromm++22

86 GHz radio image from Lu++2023, Nature

Understanding = localising: particle acceleration and VHE **y**-rays

3C273 (Jester++2006), jet "colour" (wavelength) traces particle acceleration: Blue: X-rays (Chandra), Green: Optical (HST), Yellow: Optical & Peak Radio, Red: Radio (VLA)

Understanding = localising: particle acceleration and VHE **y**-rays

3C273 (Jester++2006), jet "colour" (wavelength) traces particle acceleration: Blue: X-rays (Chandra), Green: Optical (HST), Yellow: Optical & Peak Radio, Red: Radio (VLA)

Magnetospheres

Parfrey, Philippov & Cerutti 2019 Bransgrove, Ripperda & Philippov 2021 Hakobyan, Ripperda & Philippov 2023 and many others...

350 $y \left[c / \omega_{pi}
ight]$ 300 250

Shocks/turbulence (umbrella terms for many mechanisms)

Crumley++2019, Sironi++2021; and see work by eg: Bell; Jokipii; Drury; Marscher; Böttcher, and many others...

M87 2018 MWL campaign: localising y-ray flares?

- Most significant γ-ray flare since 2010!
- Enhanced activity in higher energy bands overall compared to 2017, while radio/mm seems fairly unchanged (see e.g. Hakobyan++2023 for one scenario)
- Offers a chance to test jet/particle acceleration link with an unprecedented set of constraints why value of monitoring

EHT Multiwavelength Science WG, EHTC, Fermi-LAT, HESS, MAGIC, VERITAS, EAVN, in prep.

Next decade(s): EHT++ and multiwavelength monitoring of many AGN!

Credits: (M87: HST), (Cyg A: Chandra/HST/VLA (Cyg A), (Cen A: ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss++(Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray)+ Janssen, EHT++21, Nat Astro), (NGC 1265: M. Gendron-Marsolais++; S. Dagnello, NRAO/AUI/NSF; SDSS), (3C279, EHT), (3C293, Chandra), (Mrk501, Giroletti/VLBA/HO/RO/HALCA), (NGC1068; Kadler/VLBA), (NRAO530, Zhao++/JVLA + Jorstad, Wielgus+EHT++23), (OJ287, (Slide adapted from M. Moscibrodzka) Marscher&Jorstad/Chandra/VLA)

Next decade(s): EHT++ and multiwavelength monitoring of many AGN!

Credits: (M87: HST), (Cyg A: Chandra/HST/VLA (Cyg A), (Cen A: ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss++(Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray)+ Janssen, EHT++21, Nat Astro), (NGC 1265: M. Gendron-Marsolais++; S. Dagnello, NRAO/AUI/NSF; SDSS), (3C279, EHT), (3C293, Chandra), (Mrk501, Giroletti/VLBA/HO/RO/HALCA), (NGC1068; Kadler/VLBA), (NRAO530, Zhao++/JVLA + Jorstad, Wielgus+EHT++23), (OJ287, (Slide adapted from M. Moscibrodzka) Marscher&Jorstad/Chandra/VLA)

M87: VI BA (7mm) M87: VLBA (7mm)

OJ 287: Is it really a binary black hole??

But other options do exist!

- Kink instabilities? (Y.Mizuno+ +2014; Singh, YM++2015, Kadowaki, YM++2020)
- Tilted accretion disk (Liska, Hesp, Tchekhovskoy, Ingram, vd Klis & SM 2018; Liska, Chatterjee++2019)

(Slide adapted from J.L. Gomez)

GRMHD simulations of a SMBBH system

Exploring the effect of tilted disks (w/r/t black hole spin axis)

(Liska, Hesp, Tchekhovskoy, Ingram, vd Klis & SM 2018; 2019; Chatterjee, Younsi, Liska, Tchekhovskoy, SM++ 2020)

Tilted black holes may explain a variety of observed phenomena

Precessing jets and low frequency QPOs

Ingram & Motta 2019

Tilted black holes may explain a variety of observed phenomena

Precessing jets and low frequency QPOs

Kalamkar++2016

Tilted black holes may explain a variety of observed phenomena

Precessing jets and low frequency QPOs

Kalamkar++2016

Radiation GRMHD: low & high frequency QPOs

r = 13 r_g (disk tearing radius)

Mishra++2017; Musoke, Liska, Porth++2023

-6.000-6.758-7.515-8.273-9.030-9.788-10.545-11.303-12.061-12.818

SMA

JCMT

EHT Sites ngEHT Sites (Phase 2)

230 + 345 GHz Spans 3+ months Observes 60+ nights/year

Slide courtesy M. Johnson

Next generation EHT expansions in the planning/design phase

NOEM

HAY

APEX

ALMA

CAT

LAS

BRZ

PIKE

OVRO

BAJA SMI

Africa Millimeter Telescope ERC SyG "BlackHolistic" + NWO-RI

GAM

AMT/EHT will discover and monitor new transients and AGN

The X-ray/gamma-ray transient sky from *INTEGRAL*

AMT will enable the *first real-time census of black hole activity and explosive events* in the millimetre band, and AMT+EHT can actually resolve some of their jets!

New radio transient monitoring with MeerKAT, co-led by ERC SyG Co-PI Fender (Oxford U)

Cherenkov Telescope Array (CTA): Full N/S sky coverage with unprecedented sensitivity

CTA North ORM La Palma, Spai

> **CTA South** ESO, Chile

10x more sensitive, 3-5x better pointing accuracy, 2.5x larger FoV, and many orders of magnitude better at detecting fast transients!
Largest (open) observatory in the VHE gamma-rays with two sites in both hemispheres for full sky access (~2029)

1 Ke

CTA AGN KSP: a decade of intense VHE γ -ray monitoring (w/AMT/EHT!)

(EvenT Horizon and EnviRons=ETHER sample; Ramakrishnan, Nagar++2023)

See "Science with CTA" ebook: arXiv:1709.07997								
Programme	total N [h]	total S [h]	duration [yr]	observation mode				
Long-term monitoring	1110	390	10 †	full array				
AGN flares								
snapshots	1200	475	10 *	LSTs				
snapshots	138	68	10 *	MSTs (assuming 10 sub-arra				
verification ext. trig.	300	150	10 *	LSTs or MST sub-arrays				
follow-up of triggers	725	475	10 *	full array				
High-quality spectra								
redshift sample	195	135	3	full array				
M 87 and Cen A	100	150	3	full array				

X-ray binaries as CR/Y-ray/V sources

Laurus Arm

Norm

50+ X-ray binaries

Image Credit: Corral-Santana et al. 2016

Our

Arm

15,000 ly

Kantzas, Markoff++ 2021;2022;2023

Into the future: characterising black hole populations

e ← Size of the Moon

LOFAR: ground based low-freq. radio 25000 SMBHs in one image

SDSS optical survey: 400000 quasars in fly through, >1.5 million total

Summary

★ EHT reveals two extremes of BH cyclic activity, Sgr A* and M87*, to be remarkably similar, but Sgr A*'s lack of jets remains a puzzle for theory

Combined constraints from EHT/VLBI + MWL have the power to reveal the link between global dynamics and particle acceleration

★ 2018 results imminent, 2021-2023 (+KP and NOEMA) in pipeline. Near term: Sgr A* dynamical movies, connecting M87* to its jets

★ Coming decade builds these studies out to population of nearby nonhorizon sources, what we learn will be relevant for all jetted sources

★ Exciting future including AMT+(ng)EHT+, multi-messenger transient science, and eventually space-based VLB (in radio and X-ray!)

