TITLE

Evolution of wandering intermediate-mass black holes in high-z galaxies with 3D radiation hydrodynamics <u>simulations</u>

Erika OGATA (Univ. of Tsukuba) Ken OHSUGA* Hajime FUKUSHIMA* Hidenobu YAJIMA*

(*Center for Computational Sciences, University of Tsukuba)

The phenomenon that the gravitational object attracts and swallows gas when there is relative motion with the surrounding gas

To understand the formation of SMBHs, we focus on the growth process of intermediate-mass BHs (IMBHs) by Bondi-Hoyle-Lyttleton accr.

Most of radiation hydrodynamics simulations of Bondi-Hoyle-Lyttleton accr. have assumed isotropic radiation

2D RHD (Park & Ricotti 2013)

0.0 -0.05 -0.10 -0.15

\checkmark If the gravitational source is a compact object,

- anisotropic

Previous works (e.g. Park & Ricotti 2013, Toyouchi et al. 2020)

- The accretion disk is formed around BHs and radiation field could be

- The dust sublimates due to the strong radiation from the accretion disk

radiation field (Ogata et al. 2021)

VWe have successfully performed numerical calculation considering anisotropic

However, the fluid effects were not considered

(thermal pressure, shock at the ionization front etc..)

In this work, we perform 3D radiation hydrodynamics simulations of Bondi-Hoyle-Lyttleton acc. under the anisotropic radiation (Ogata et al. submitted)

METHODS

Code : SFUMATO-M1

Settings : Sink radius $R_{in} = 2 \times 10^{-3}$ pc (< dust sublimation radius) Simulation box $R_{out} = 2 \times 10^{1} \text{pc}$ (»ionization radius, Bondi-Hoyle-Lyttleton radius) Dust sublimation temperature $T_{\rm subl} = 10^3$ K, Luminosity $L \propto \dot{M}$, Spectrum $L_{\nu} \propto \nu^{-1.5}$

Basic Eq. :

Radiation hydrodynamics eq.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0$$

$$\frac{\partial (\rho v)}{\partial t} + \nabla (\rho v \otimes v) + \nabla P = \rho(g + f)$$

$$\frac{\partial (\rho E)}{\partial t} + \nabla [(\rho E + P)v] = \rho(g + f) \cdot v + \Gamma - A$$

$$E = \frac{|v|^2}{2} + (\gamma - 1)^{-1} \frac{P}{\rho}$$

 ρ : density v: velocity g: gravity Λ : cooling rate F_{rad} : radiative flux P: pressure f: radiation force

Fukushima & Yajima (2021)

Moment eq. (M1 closure) $\frac{\partial E_{\text{rad}}}{\partial t} + \nabla \cdot \boldsymbol{F}_{\text{rad}} = S - \alpha_{\text{E}} \tilde{c} E_{\text{rad}}$ $\frac{1}{\tilde{c}}\frac{\partial \boldsymbol{F}_{\text{rad}}}{\partial t} + \tilde{c}\nabla \cdot \boldsymbol{P} = -\alpha_{\text{F}}\boldsymbol{F}_{\text{rad}}$ $\boldsymbol{P}_{\mathrm{rad}} = \boldsymbol{E}_{\mathrm{rad}}\boldsymbol{D}$ $D = \frac{1-\chi}{2}I + \frac{3\chi - 1}{2}n \otimes n \qquad , n = \frac{F}{|F|}$ $\chi = \frac{3 + 4f^2}{5 + 2\sqrt{4 - 3f^2}} \quad ,f = \frac{|F|}{\tilde{c}E}$

Chemical networks $H, H_2, H^+, H^-,$ $H_{2}^{+}, CO, C^{+}, O,$ O^+, O^{2+}, e

E: total energy Γ : heating rate E_{rad} : radiative energy density α_{E} : absorption coefficient $\alpha_{\rm F}$: absorption coefficient P_{rad} : radiative pressure tensor \tilde{c} : reduce light speed

Fixed values

 \checkmark BH mass : $M_{\rm BH} = 10^4 M_{\odot}$

✓ Metallicity : $Z = 0.1Z_{\odot}$

 \checkmark Temperature : T = 180 K

✓Disk inclination : edge-on

Parmeters

✓Gas velocity : $v_{\infty} = 20, 100 \text{ km/s}$ ✓Gas density : $n_{\infty} = 10^4, \ 10^6 \ \mathrm{cm}^{-3}$

✓When the relative velocity is high ($\gtrsim 100 \text{ km/s}$), the accr. rate is nearly consistent with classical Bondi-Hoyle-Lyttleton rate $\dot{M}_{\rm BHL}$

$\sqrt{\text{When the relative velocity is low, the accr. rate is < several <math>\times 10\%$ of \dot{M}_{BHL}

What's happening in the low velocity? (Next page)

RESULTS : Structure of flow

 \sqrt{W} When the relative velocity is low (\lesssim several \times 10km/s), the shock appears near the ionization front

VNot only the radiation force near the disk rotation axis, but also the gas pressure gradient force near the shock front bends the streamlines away from the IMBHs

The IMBHs could accelerate due to gravity caused by the high-density shell associated with the shock wave.

$$cceleration = \int_{0}^{4\pi} \int_{R}^{R_{out}} \frac{\rho G x}{R'^3} dR' d\Omega + \int_{S_{sink}} \rho v_x v \cdot dS$$

$\sqrt{\text{(Timescale of acceleration)}} << (Timescale of mass increase)$ \rightarrow The IMBHs in the early universe ($z \gtrsim 6, 0.1 Z_{\odot}$) float with relative velocity \gtrsim several x 10km/s without mass increase when the gas density is ~ 10⁴ cm⁻³

 $\sqrt{\text{(Timescale of acceleration)}} << (Timescale of mass increase)$

\rightarrow The IMBHs in the early universe ($z \gtrsim 6, 0.1 Z_{\odot}$) shift Bondi accr. in a few Myr, and then mass could increase significantly when gas density is $\sim 10^{6} cm^{-3}$

- When the relative velocity is low (\leq several x 10km/s), not only the radiation near the shock front bends the streamlines away from the IMBHs
- VOur simulations imply that the IMBHs in the early universe ($z \ge 6$)

 - when the gas density is $\sim 10^{6} \text{cm}^{-3}$

We study the Bondi-Hoyle-Lyttleton accr. mechanism onto IMBHs with accr. disks wandering in dusty-gas by **3D radiation hydrodynamics simulations** (Ogata et al. submitted)

force near the disk rotation axis, but also the gas pressure gradient force

- float with relative velocity \geq several × 10km/s when gas density is ~ 10⁴ cm⁻³

- shift Bondi accr. in a few Myr, and then its mass increases significantly

