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Spectra (schematic)

Three Accretion Modes . @)
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Different spectral states imply the 2 ) (c)
existence of different accretion modes &
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Mass accretion rate
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(a)Slim disk (b)Standard disk (c)RIAF/ADAF
Temperature 108 ~106-7 9
(10Msun) 108K 106-7K 10°K
Optical thickness  thick thick thin

Shakura & Sunyaev 73, Ichimaru 77, Abramowicz et al. 88, Narayan & Yi 1995



BH Mass vs Accretion rate

Slim disk (supre-Edd. disk)
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Importance of Radiation and Magnetic Fields

Energy Matter Magnet Fields;
R:g'e?tlon Outflow is launched m Angular momentum is transported
magnetic gy from the disk by MRI, leading to the mass
dissipation accretion onto BHs.
and/or =
turbulence
Radiation Fields;
Grav. : Gas Disk loses the.energy by emitting
energy ’ photons (cooling).
* Black hole m Radiation pressure determines

accretion disK o ce the thickness of the disk.

m Radiation force drives outflows

Radiation-MHD Simulations are necessary.



BaS|c Equatlons of Radlatlon MHD
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RADIATION
We use Kerr-shild metric & M1-closure

They are general relativistic (GR) version; non-GR version is also used.



Radiation-MHD simulations of Super-Edd. Flows
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Setup
B BH mass: 10Msun

B Initial condition: equilibrium torus with
embedded poloidal magnetic field (plasma-
beta=100)

Quasi-steady structure
B The super-Eddington disks (Mdot ~ a few

100LEdd/c?, Ldisk >> Lgqdd)
B Radiatively-driven outflows

see also
Ohsuga et al. 2009; 2011
Sadowski et al. 2014, Jiang et al. 2014
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Why is super-Eddington accretion feasible?

Gas density

Radiation

Outflow! Radiatively driven outflows:

Strong radiation pressure supports the
thick disk and generates the outflows
above the disk.

a

Accretion:
Photons mainly escape through the less-
dense region above the disk. The radiation

pressure cannot prevent the accreting
motion within the disk.

Accretion



Velocity of radiatively-driven outflows (~0.3-0.5c)

4 )
Resulting jet velocity (~0.3-0.5c) is Acceleration via Radiation Flux Force
roughly consistent with the jets in SS433. i 1
10 R otal radiatlion force
:c;itljt'o: firccf j
‘]O6 drag force

Takeuchi, Ohsuga;-Mirieshige. 2010
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No acceleration because of
Flux Force ~ Drag Force




X-RAY SPECTRA (dats; Gladstone 2009

Monte Carlo

d}\o‘»o“ Radiation Transfer: I

High-energy X-ray photons
are produced by the thermal
& bulk Comptonization.
Simulated spectra nicely fit
the observations of ULXs.

I/LV/LX

VL,,/LX

I/LV/LX

NGC1313 X-2

1 L

0.1/

0.1¢
M ~ 200 Lg/c* (i =0—10°)

NGC5204 X-1

O-LF AT ~ 200 Ly /c® (i = 40 — 50°)

0.3 1 10
energy [keV]



Clumpy outflows from super-Edd. disks
Takeuchi, Ohsuga, Mineshige 2013
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Clumpy outflows: Wind outflows fragment into many gas clouds
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Observations of clumpy outflows

Some ULXs exhibit the time Launching of clumpy winds is also
variations of X-ray luminosity, reported by observations of NLS1s
implying the launching of clumpy or V404 Cyag.
outflows.
O (e.g. RX‘ Jsoi‘g:fflg; II:[I:(? }2844+026) ‘Cz:?{)ll{e;,;xgss) Is
G QOO Clumpy Disc Wind \ / Clumpy Disc Wind /
' QD ®
| G o
f g{'.:pl](;.ally thick)
' _ ® —
. e TN i

Middleton+11 Jin+17 see also Motta+17



Comparison With ULXS Kobayashi et al. 2018

Absorption lines

Outflow velocity of ~0.1-0.2c
agrees with the observations of

blueshifted absorption lines.

Flux ( photons m-2s-' A-1)

05 1
. . - T - . . - T
2 IX
>
Fe XVII o £z
: a a
! e o
. 3 o -
/ a 950
i X )
{ oo
: wu e
: n e
! @ g
- ; e nd
s Qo
vl - mm
: -
Y P
¥ <
: =
v :
H Q
! =
%‘}

Pinto+16,
see also Kosec+18
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Time variation

Timescale of the luminosity
variation (100Rs/0.3Vkep) is

.~ 2.5 ( ) S
10 M@ 102 s 103 rs

Our result is consistent with the
observations of ULXs (Middleton+11)
and V404 Cyg (Motta+17) in the case
of Mey~10-100Msun.




Overall structure of the super-Edd. disk

Schematic picture of the overall structure
4 m Super-Eddington flows consist of

three components; radiation

Clumpy wind pressure-dominated disk, radiatively-
driven high-velocity outflow around
the rotation axis (jet), radiatively-
driven clumpy disk wind.

disk] = High-energy photons are generated
by Compton scattering and time
variation of the X-ray luminosity is

> caused by the clumps.
Equatorial Plane

Black hole Ryrap
Kitaki et al. 2021, Yoshioka et al. 2022



Super-Eddington flows around rotating BH
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Setup
B BH mass: 10Msun

B Initial condition: equilibrium torus with
embedded poloidal magnetic field
(plasma-beta=100)

m Spin parameter: -0.9, -0.7, -0.5, -0.3,
0,0.3,0.5,0.7,0.9

Quasi-steady structure

H In all models, the super-Eddington
disks (Mdot ~ a few 100Lgq4/c2) and
strong outflows are formed.

* Magnetic field is not so strong (SANE)




Energy conversion efficiency

0.1

—=— Radiation Luminosity For the case of a*~0, energy is mainly

i viagnetic Luminosity | released by the radiation. When |a*| is large,
the energy released by the Poynting flux
(Magnetic Luminosity) exceeds the Radiation
Luminosity.

—e— Kinetic Luminosity

Lx/(Mdot c?)

Lor— | B Radiation luminosity accounts for 80% when
0.8 a* ~ 0. But the magnetic luminosity is three
times larger than the radiation luminosity for
the case of a* > 0.5.

Lx/Ltotal

o
[N)

0.0 , , . . .
-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
*

a see also
Sadowski et al. 2014



Enhancement of Poynting flux
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, The Poynting flux around the

rotation axis is stronger for
larger |a*|. This is probably
caused by BZ effect.



Lense-Thirring precession of super-Edd. disk

BH spin axis

Blue: mass density
Orange: outflow with >0.3c

Asahina, Ohsuga, submitted
Setup
B BH mass: 10Msun
B Initial condition: equilibrium torus with
embedded poloidal magnetic field (plasma-
beta=100) tilted 30 degree.
B Spin parameter: 0.9

Inflow-outflow structure

B The super-Eddington disk, which is tilted
and twisted, forms.

B Strong outflows are also formed.

¢ Accretion rate: several 100 Lgqq/c?
¢ Radiation Luminosity: several Leqq
¢ Kinetic Luminosity: several Leqd



Tilted and twisted super-Edd. disk

t~6000[ry/c]

tilt angle

precession angle
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Initial torus
tilted angle = 30°

Initial torus

(@)

precession angle = 180°

30

40

B The tilt angle of the outer region is ~30°, which is
determined by the initial setting of the torus.

H The tilt angle as well as the precession angle
increases as decrease of the radius => the inner
part of the disk is more tilted and more twisted (see

below)

rotation axis
at each radius

Schematic picture of twisted, tilted disk

Preceﬁsion
angle




Precession of disk |

tilt angle

precession angle

50
(a)
45 ‘ ‘
40 5 Tg e ’ CRREHY
o Rk " g
35, 107577\ AWAYA T4
AN S\ N ‘\n|
\AaY, N
T = 30 rg
230! ( )
2200 51y o s FFE 3 2 N\
210 ..': ) ¥ ; \“‘\ ,,‘\ /‘, ]
10 r ,'\\._\f"\/‘ ’1’ \\ Ry \
200 BN
190 7 = 30 7,

1805~ 2000 4000 6000 8000 10000
t [rg/C]

rotation axis
at each radius tilt

Precession
angle

The tilt angle does not change so much.

The precession angle increases with time.

— The disk exhibits precession motion without
Changing Shape- *Note that computation time is short.



Precession of outflow & radiation

Ejection direction of outflow and radiation
40

(a) o | Outflow and radiation are ejected mainly around
9 3 Dk @tangle r>%0%), the disk rotation axis (~30°) and not around the BH
S ol spin axis (=0°).
2 | — Outflow (200r)
a ;' — Outflow (100 _ _ o

= — R:di:,::én (zz,g(),rg) The direction of outflow and radiation increases

(b) sk — Radiation (100ra) - with time. This is probably caused by the
2 ol angle (r >30r) | precessional motion of the disk.
% ‘
E e The typical timescale of the precession is ~9sec for
£ 180, the case of stellar mass BH(10Msun). This
< - timescale is consistent with the QPOs

5000 6000 7000 8000 9000 10000

observed in some ULXs.
t[rg/c]



Simulations of line winds from near-Edd. disks

Nomura et al. 2016, 2017, 2020, 2021

(see also Proga et al. 00, 04) » From the standard disk, the disk

wind is launched by the radiation
force for spectral lines (line-force).

~

eleration

time= 0.463yr F

BH(

log p(g cm™)

Line Force: Mets s-get momentum

by the line absorption (bound-bound
Qnsition) of UV. J

(Lgisk~0.5LEqq)



Comparison with UFOs (PG 1211+143)

Monte Carlo Radiation _
Transfer (MONACO): Absorption by

BH(102Msun) m slow component
il Absorption b
) vy Emission line \fast Cor%ponext

-

Standard disk

®m There are some absorbing
regions along the line of sight.

m X-ray spectrum (two absorption
lines and emission line) can be
well described by our model.

b

E Mizumoto et al. 2021

2 3 4 5 6 7 8 9 10
Observed energy (keV)



Future observations

XMM-Newton/EPIC-pn (100ks) XRISM/Resolve (100ks) Athena/X-IFU (100ks)
< i XMM-Newton | Athena |
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8Energy (keV) ’ d Energy (keV) { 8Energy (keV) ’
Absorption lines from H-like and He- More detailed absorption profiles
like iron are resolved by XRISM. can be understood by Athena.

A more detailed comparison with observations by XRISM and Athena
provides a more accurate understanding of the disk wind structure.



Simulations of thermal-radiative wind
from near-Edd. disks wmar etai 2020

Number Density (log n) . Gas is heated up via the Comptonization
1
and blown away by the gas pressure
Q9r- _ ., force and the radiation force. .
. f - viewing
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Comparison with observations (H1743-322)

Chandra/HETGS data
vyith begt-fitting model

Simulated spectrum of
a 30 ks XRISM observation
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Simulation results are
consistent with observations of
BH binary, H1743-322.

BN

Separation of Fe absorption
lines due to velocity difference
would be detected by XRISM.




Summary

Super-Eddington case:

Our radiation-MHD simulations reveal that the super-Eddington flows consist of the
[1]radiation pressure-supported disk, [2]the radiatively-driven high-velocity outflows
around toe rotation axis, and [3]clumpy disk winds with wide opening angle. Basic
features of ULXs can be explained by super-Eddington flows.

BH spin enhance the energy-conversion efficiency. This is probably caused by BZ
effect. LT precession occurs even in the super-Eddington flows. The precession motion
might be origin of QPOs of ULXs.

Near-Eddington case:

Due to the line force, the disk winds are launched from the near-Eddington disks
around supermassive BHs. The UFOs observed in AGNs can be explained by line-
driving wind. Future X-ray observations are important to reveal the disk wind structure.




