Simulating Bondi-Like Accretion Flows Around Black Holes

Tom Man Kwan

The University of Hong Kong

+ Jane Dai, Sasha Tchekhovskoy

Astrophysical Black Holes: A Rapidly Moving Field 24 June 2023

Black Holes and Accretion Disks

Credit: ESA/NASA/Felix Mirabel

- Gas accreting onto black hole carries angular momentum and forms a disk
- Disk viscous process allows the gas accrete and powers luminous emission
- Sometimes a relativistic jet is produced!

Relativistic Jets launched from Black Holes

 P_{Jet}

Blandford-Znajek Mechamism (1977)

 $P_{jet} \propto \phi^2 a^2$ Jet Power Magnetic flux Black hole spin

Magnetically Arrested Disk

Tchekhovskoy+ 2011; McKinney+ 2012

- Magnetically Arrested Disk (MAD) is formed when the inflow carries strong, ordered magnetic flux near the BH
- Dimensionless magnetic flux at horizon (MAD parameter) $\phi_{H} = \frac{\Phi_{H}}{\sqrt[]{M_{H}}} \gtrsim 40$
- A powerful jet can be launched
- Disk carries large angular momentum

What if the accretion flow carries low angular momentum?

BH High-mass X-ray Binary (Credit: ESA)

Sgr A* (Credit: EHT) Tidal Disruption Events (Credit: NASA/ CXC / M. Weiss) 5

Bondi & Bondi-like Accretion

- Zero angular momentum: Bondi model
- A thick torus structure can form when gas has low angular momentum (e.g. Proga & Begelman 2003; Lee & Ramirez 2006; Sukova 2015)

Bondi 1952

Bondi & Bondi-like Accretion

- Zero angular momentum: Bondi model
- A thick torus structure can form when gas has low angular momentum (e.g. Proga & Begelman 2003; Lee & Ramirez 2006; Sukova 2015)

Bondi 1952

Simulation Code: HARM

3D general <u>relativistic magnetohyd</u>rodynamics (GRMHD) code HARM

(Gammie+ 2003, Noble+ 2006, McKinney+ 2012)

Continuity equation

$$\nabla_{\!\mu}(nu^{\mu})=0$$

Conservation of Energy-Momentum

$$T^{\mu}_{\nu} = T^{MA}{}^{\mu}_{\nu} + T^{EM}{}^{\mu}_{\nu}$$
$$\nabla_{\mu}T^{\mu}_{\nu} = 0$$

Conservation of Magnetic flux

$$\partial_t \left(\sqrt{-g} B^i \right) = -\partial \left[\sqrt{-g} \left(b^j u^i - b^i u^j \right) \right]$$

GRMHD Simulations Setup

- Three simulations with zero or very small specific angular momentum
- Black hole spin: 0.9
- Spherically symmetric gas density
- Circularization radius $R_c = 0, 10, 50 r_g$ (BH gravitational radius)
- Poloidal magnetic field in the gas
- Simulation box: $10^5 r_g$

$$R_c = 0 r_g$$

Edge-on view

$$R_c = 50 r_g$$

Edge-on view

Face-on view

11

MAD Formation

 $= \begin{cases} 80 \\ -10000 \\$

Kwan et al. 2023

MAD condition

R_c	$\phi_{\scriptscriptstyle H}$
0	27.4
10	23.4
50	45.6

- $R_c = 0,10r_g$: form MAD initially but later fail to maintain MAD
- $R_c = 50 r_g$: build up slowly but maintain MAD

Jet Power

Kwan et al. 2023

R_c	$\phi_{\scriptscriptstyle H}$	$\eta_{jet}(\%)$
0	27.4	18.6
10	23.4	10.1
50	45.6	61.4

• $R_c = 50 r_g$: powerful jets with high jet efficiency • $R_c = 0.10 r_g$: weaker jets with jet efficiency $\sim 10\%$

Dissipation of magnetic flux Gas density

EM energy flux

 $R_c = 0$

 $R_c = 50r_g$

Is a "disk" produced?

$$R_{c} = 0,10r_{g}$$
 :

- Gas rotating in different directions at different latitude

- Outflow in some ϕ -directions even along mid-plane

Kwan et al. 2023

Jet Power

Kwan et al. 2023

R_c	$\phi_{\scriptscriptstyle H}$	$\eta_{jet}(\%)$
0	27.4	18.6
10	23.4	10.1
50	45.6	61.4

• $R_c = 50 r_g$: powerful jets with high jet efficiency • $R_c = 0.10 r_g$: weaker jets with jet efficiency ~ 10%

Relativistic Jets launched from Black Holes

 P_{Jet}

Blandford-Znajek Mechamism (1977)

Key messages

- * A disk is not needed to produce a jet
- * Zero gas angular momentum accretion flow around a spinning black hole can still launch a jet through BZ process
- * A small specific angular momentum threshold is needed for the accreting gas to sustain MAD and launch very powerful jets
- * The interplay between gas angular momentum and magnetic flux is important!

Kwan, T. M., Dai, L., Tchekhovskoy, A, 2023, ApJL, 946, L42